CS 357 Textbook
Course Quick Links
Notes
  • 2. Python
  • 3. Errors and Complexity
  • 4. Floating Point Representation
  • 5. Rounding
  • 6. Taylor Series
  • 7. Random Number Generators and Monte Carlo Method
  • 8. Vectors, Matrices, and Norms
  • 9. LU Decomposition for Solving Linear Equations
  • 10. Sparse Matrices
  • 11. Condition Numbers
  • 12. Eigenvalues and Eigenvectors
  • 13. Markov chains
  • 14. Finite Difference Methods
  • 15. Solving Nonlinear Equations
  • 16. Optimization
  • 17. Least Squares Fitting
  • 18. Singular Value Decomposition (SVD)
  • 19. Principal Component Analysis (PCA)
Slides
CS 357 Textbook
  • notes
  • README.md

Notes

Here are all the notes from each topic in the class. You can also acesss the same links on the sidebar.

  • Python
  • Errors and Complexity
  • Floating Point Representation
  • Rounding
  • Taylor Series
  • Random Number Generators and Monte Carlo Method
  • Vectors, Matrices, and Norms
  • LU Decomposition for Solving Linear Equations
  • Sparse Matrices
  • Condition Numbers
  • Eigenvalues and Eigenvectors
  • Markov chains
  • Finite Difference Methods
  • Solving Nonlinear Equations
  • Optimization
  • Least Squares Fitting
  • Singular Value Decomposition (SVD)
  • Principal Component Analysis (PCA)

Next

2025, CS 357 @ UIUC Course Staff
CS 357 Textbook
433627a
Links
Course Homepage
Issues
Download

CS 357 Textbook uses the Jekyll RTD theme provided by RunDocs.